Diastereoselectivity of Conjugate Addition to γ -Alkyl- α , β -unsaturated Esters; Stereocontrol with the Aid of Organocopper Reagents

Yoshinori Yamamoto,*a Shinji Nishii,a and Toshiro Ibukab

^a Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

^b Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan

The conjugate addition of organo-cuprate and -copper reagents to the *trans*-ester (1) produced the *anti*-isomer (4a) predominantly, while addition of cuprates to the *cis*-esters (2 and 3) gave the *syn*-isomer (5) preferentially, and addition of organocopper compounds to (2) and (3) afforded the *anti*-isomer (4) predominantly; this change indicates the importance of reagent type in controlling 1,2-asymmetric induction during conjugate addition.

Although the diastereofacial stereoselectivity in the Michael addition to γ -alkoxy- α , β -unsaturated carbonyl compounds has been investigated widely,¹ the stereoselectivity of the conjugate addition to γ -alkyl- α , β -unsaturated derivatives has received little attention.² We report that the type of organo-copper reagent, as well as the double bond geometry, exert a strong influence upon the diastereoselectivity. The results are summarized in Table 1.

The conjugate addition³ to the *trans*-ester (1) produced the

anti-isomer (4a) predominantly regardless of the reagent type (Table 1, entries 1--3; Scheme 1). To our surprise, opposite diastereoselectivity was observed with the cuprate and the copper reagents; in the addition to the *cis*-ester (2), butyl-copper-BF₃ gave the *anti*-product (4a) predominantly (entry 5), while cuprates produced the *syn*-isomer (5a) preferentially (entries 4 and 6). This interesting observation was further confirmed in the addition to the diester (3) which also possessed a *cis*-ester group: the cuprate reagents produced the

Table 1. Diastereoselectivity of conjugate addition to γ -alkyl- α , β -unsaturated esters.^a

Entry Substrate	RM	Product ratio ^b (4):(5) (<i>anti</i>):(<i>syn</i>)	Total isolated yield, %
1 (1)	Bu ₂ CuLi•BF ₃	70:30	90
2 (1)	BuCu·BF ₃	88:12	82
3 (1)	Me ₃ CuLi ₂ ·BF ₃	87:13	46
4 (2)	Bu ₂ CuLi•BF ₃	30:70	89
5 (2)	BuCu·BF ₃	74:26	84
6 (2)	Me ₃ CuLi ₂ ·BF ₃	21:79	67
7 (3)	Bu ₂ CuLi•BF ₃	32:68	67
8 (3)	BuCu•BF ₃	74:26	90
9 (3)	Me ₃ CuLi ₂ ·BF ₃	39:61	90
10 (3)	Bu ₂ CuLi ^c	8:92	87
11 (3)	MeCu·BF ₃	79:21	95
12 (3)	MeMgBr	60:40	89
13 (3)	Me₄AlLi	62:38	88
14 (3)	CH ₂ =CHCH ₂ SnBu ₃ ^d	96: 4	93

^a All reactions were carried out on a 1 mmol scale under Ar. The substrate was added to an ether solution of the organometallic compounds at -78 °C and the reaction was quenched at -20 °C, except where otherwise indicated. ^b By capillary g.l.c. (SE-30, 25 m). For entries 1, 2, 4, and 5, ¹H n.m.r. analysis was used. ^c 1,2-Dimethoxyethane was used as a solvent. ^d CH₂Cl₂ was used as a solvent and TiCl₄ (1 equiv.) was added.

syn-isomer (5b) predominantly (entries 7, 9, and 10), while the copper and common organometallic reagents gave the *anti*isomer (4b) preferentially (entries 8, 11–14). In conclusion, (i) the *trans*-ester (1) gave the *anti*-isomer (4) irrespective of the copper reagent type, (ii) the *cis*-esters (2 and 3) also produced (4) *via* copper reagents, and (iii) they afforded the *syn*-isomer (5) *via* cuprate reagents (Scheme 2). The struc-

tures of (4) and (5) were assigned unambiguously by comparison with authentic materials.[†]

The diastereoselectivity can be explained as follows (Scheme 3). A modified Felkin–Anh model (6) is applicable to the addition of RCu to the *trans*-ester. The cuprate addition, which may proceed through an electron transfer process, presumably proceeds *via* a staggered conformation (7) rather than (6).⁴ For the addition of RCu and common nucleophiles to the *cis*-esters, conformation (8) is destabilized owing to steric repulsion, forcing structure (9) to be adopted which produces the *anti*-isomer. The staggered model (10) of the *cis*-esters is destabilized for the same reason, and thus the cuprate addition proceeds through (11) to give the *syn*-isomer.

Evidence for the electron transfer process in R_2 CuLi addition was obtained by a trapping experiment with *p*-dinitrobenzene; Bu₂CuLi addition to (3) in the presence of 1 equiv. of *p*-dinitrobenzene produced the *anti*-isomer predominantly. Use of 10 equiv. of *p*-dinitrobenzene completely inhibited the conjugate addition. These findings provide the first example of acyclic stereocontrol which can be directed by either a one or two electron transfer process.

Received, 21st April 1987; Com. 530

References

- 1 For a recent paper on this subject see Y. Yamamoto, S. Nishii, and T. Ibuka, J. Chem. Soc., Chem. Commun., 1987, 561, and references cited therein.
- 2 D. Kruger, A. E. Sopchik, and C. A. Kingsbury, J. Org. Chem., 1984, 49, 778; C. H. Heathcock and D. E. Uehling, *ibid.*, 1986, 51, 279.
- 3 For a review of organocopper-Lewis acid reagents see Y. Yamamoto, Angew. Chem., Int. Ed. Engl., 1986, 25, 947.
- 4 K. N. Houk, M. N. Paddon-Row, N. G. Rondan, Y.-D. Wu, F. K. Brown, D. C. Spellmeyer, J. T. Metz, Y. Li, and R. J. Loncharich, *Science*, 1986, **231**, 1108.

⁺ In products (**4a**) and (**5a**) the CHCO₂Et centre can also be chiral. We have not yet investigated this problem in this system. The stereoselectivity of alkylation of the related ester enolates has been reported: see Y. Yamamoto and K. Maruyama, J. Chem. Soc., Chem. Commun., 1984, 904.